Showing posts with label LTE Technical. Show all posts
Showing posts with label LTE Technical. Show all posts

Tuesday, October 5, 2010

Recap of LTE E-UTRAN and Air Interface Protocols



You can also check out the IEEE Comsoc Video tutorial "LTE Radio Access – Physical Layer", delivered by none other than Stefan Parkvall of Ericsson. The tutorial is available at: http://host.comsoc.org/freetutorial/anritsu3/anritsu3.html

Monday, October 4, 2010

3GPP Green activities / Energy Saving initiatives


3GPP has been working on Energy saving initiatives for Release-10 and Release-11. Here is a very quick summary of some of these items.

Telecommunication management; Study on Energy Savings Management (ESM)

Most mobile network operators aim at reducing their greenhouse emissions, by several means such as limiting their networks' energy consumption.

In new generation Radio Access Networks such as LTE, Energy Savings Management function takes place especially when mobile network operators want e.g. to reduce Tx power, switch off/on cell, etc. based on measurements made in the network having shown that there is no need to maintain active the full set of NE capabilities.

By initiating this Work Item about Energy Savings Management, 3GPP hopes to contribute to the protection of our environment and the environment of future generations.

The objective of this technical work is to study automated energy savings management features. Usage of existing IRPs is expected as much as possible, e.g. Configuration Management IRP, etc. However, this technical work may identify the need for defining a new IRP.

The following operations may be considered in this study item (but not necessarily limited to):
• Retrieval of energy consumption measurements
• Retrieval of traffic load measurements
• Adjust Network Resources capabilities


OAM aspects of Energy Saving in Radio Networks

There are strong requirements from operators on the management and monitoring of energy saving functions and the evaluation of its impact on the network and service quality. Therefore an efficient and standardized Management of Energy Saving functionality is needed. Coordination with other functionalities like load balancing and optimization functions is also required.

The objectives of this work item are:
• Define Energy Savings Management OAM requirements and solutions for the following use cases,
• eNodeB Overlaid
• Carrier restricted
• Capacity Limited Network
• Define OAM requirements and solutions for coordination of ESM with other functions like
• Self-Optimization
• Self Healing
• Traditional configuration management
• Fault Management
• Select existing measurements which can be used for assessing the impact and effect of Energy Saving actions corresponding to above Energy Saving use cases.
• Define new measurements which are required for assessing the impact and effect of Energy Saving actions, including measurements of the energy consumption corresponding to above Energy Saving use cases.


Study on impacts on UE-Core Network signalling from Energy Saving

Energy Saving (ES) mechanisms are becoming an integral part of radio networks, and consequently, of mobile networks. Strong requirements from operators (for reasons of cost and environmental image) and indirectly from authorities (for the sake of meeting overall international and national targets) have been formulated. With the expected masses of mobile network radio equipment as commodities, in the form of Home NB/eNBs, this aspect becomes even more crucial.

It is necessary to ensure that ES does not lead to service degradation or inefficiencies in the network. In particular:
• the activation status of radio stations (on/off) introduces a new scale of dynamicity for the UE and network;
• mass effects in signalling potentially endanger the network stability and need to be handled properly.

It is unclear whether and how currently defined procedures are able to cope with, and eventually can be optimized for, ES conditions; thus a systematic study is needed.

The study aims, within the defined CT1 work areas, at:
• analysing UE idle mode procedures and UE-Core Network signalling resulting from frequent switch on/off of radio equipment in all 3GPP accesses, including home cell deployment and I-WLAN;
• performing a corresponding analysis for connected mode UEs;
• analysing similar impacts from activation status of non-3GPP access networks;
• documenting limitations, weaknesses and inefficiencies in these procedures, with emphasis on mass effects in the UE-Core Network signalling;
• studying potential optimizations and enhancements to these procedures;

The study shall also evaluate and give recommendations on potential enhancements to 3GPP specifications (whether and where they are seen necessary).


Study on Solutions for Energy Saving within UTRA Node B

Due to the need to reduce energy consumption within operators’ networks, and considering the large amount of UMTS network equipment deployed in the field around the world, the standardisation of methods to save energy in UMTS Node Bs is seen as an important area of study for 3GPP.There has not been a large amount of focus on energy-saving in UMTS networks so far in 3GPP, although some solutions have been agreed in Release 9. Therefore it is proposed to start an initial study phase to identify solutions and perform any initial evaluation, such that a subset of these proposals can be used as the basis for further investigation of their feasibility.

The objective is to do an initial study to identify potential solutions to enable energy saving within UMTS Node-Bs, and do light initial evaluation of the proposed solutions, with the aim that a subset of them can be taken forward for further investigation as part of a more focused study in 3GPP.

The solutions identified in this study item should consider the following aspects:
• Impacts on the time for legacy and new UEs to gain access to service from the Node B
• Impacts on legacy and new terminals (e.g. power consumption, mobility)

Some initial indication of these aspects in relation to the proposed solutions should be provided.


Study on Network Energy Saving for E-UTRAN

The power efficiency in the infrastructure and terminal should be an essential part of the cost-related requirements in LTE-A. There is a strong need to investigate possible network energy saving mechanisms to reduce CO2 emission and OPEX of operators.

Although some solutions have been proposed and part of them have been agreed in Release-9, there has not been a large amount of attention on energy saving for E-UTRAN so far. Many potential solutions are not fully shown and discussed yet. Therefore, it is proposed to start an initial study phase to identify solutions, evaluate their gains and impacts on specifications.

The following use cases will be considered in this study item:
• Intra-eNB energy saving
• Inter-eNB energy saving
• Inter-RAT energy saving

Intra-eNB energy saving, in EUTRAN network, a single cell can operate in energy saving mode when the resource utilization is sufficiently low. In this case, the reduction of energy consumption will be mainly based on traffic monitoring with regard to QoS and coverage assurance.

A lot of work on Inter-eNB energy saving has already been done for both LTE and UTRA in Rel-9. This Study Item will investigate additional aspects (if any) on top of what was already agreed for R9.

Inter-RAT energy saving, in this use case, legacy networks, i.e. GERAN and UTRAN, provide radio coverage together with E-UTRAN. For example E-UTRAN Cell A is totally covered by UTRAN Cell B. Cell B is deployed to provide basic coverage of the voice or medium/low-speed data services in the area, while Cell A enhances the capability of the area to support high-speed data services. Then the energy saving procedure can be enabled based on the interaction of E-UTRAN and UTRAN system.

The objective of this study item is to identify potential solutions for energy saving in E-UTRAN and perform initial evaluation of the proposed solutions, so that a subset of them can be used as the basis for further investigation and standardization.

Energy saving solutions identified in this study item should be justified by valid scenario(s), and based on cell/network load situation. Impacts on legacy and new terminals when introducing an energy saving solution should be carefully considered. The scope of the study item shall be as follows:
• User accessibility should be guaranteed when a cell transfers to energy saving mode
• Backward compatibility shall be ensured and the ability to provide energy saving for Rel-10 network deployment that serves a number of legacy UEs should be considered
• Solutions shall not impact the Uu physical layer
• The solutions should not impact negatively the UE power consumption

RAN2 will focus on the Intra-eNB energy saving, while RAN3 will work on Inter-RAT energy saving and potential additional Inter-eNB energy saving technology.


Study on Solutions for GSM/EDGE BTS Energy Saving

There has not been a large amount of focus on energy-saving in GSM/EDGE networks so far in 3GPP, although some solutions have been agreed in previous Releases, notably MCBTS. Therefore it is proposed to start an initial study phase to identify solutions and perform any initial evaluation, such that a subset of these proposals can be used as the basis for further investigation of their feasibility.

The objective is to study potential solutions to enable energy saving within the BTS (including MCBTS and MSR), and evaluate each proposed solutions in detail. These potential solutions shall focus on the following specific aspects
• Reduction of Power on the BCCH carrier (potentially enabling dynamic adjustment of BCCH power)
• Reduction of power on DL common control channels
• Reduction of power on DL channels in dedicated mode, DTM and packet transfer mode
• Deactivation of cells (e.g. Cell Power Down and Cell DTX like concepts as discussed in RAN)
• Deactivation of other RATs in areas with multi-RAT deployments, for example, where the mobile station could assist the network to suspend/minimise specific in-use RATs at specific times of day
• And any other radio interface impacted power reduction solutions.

The solutions identified in this study item shall also consider the following aspects:
• Impacts on the time for legacy and new mobile stations to gain access to service from the BTS
• Impacts on legacy and new mobile stations to keep the ongoing service (without increasing drop rate)
• Impacts on legacy and new mobile stations implementation and power consumption, e.g. due to reduction in DL power, cell (re-)selection performance, handover performance, etc.
• Impacts on UL/DL coverage balance, especially to CS voice

Solutions shall be considered for both BTS energy saving non-supporting and supporting mobile stations (i.e. solutions that are non-backwards compatible towards legacy mobile stations shall be out of the scope of this study).

Recap of MIMO Technologies in 3GPP LTE and LTE-Advanced

Friday, October 1, 2010

1200Mbps DL with LTE-Advanced


I blogged last year about the LTE-A UE categories but then the categories were still under discussion. In the 3GPP RAN WG1#62 LTE-Advanced UE Categories were discussed based on NTT DoCoMo proposal and the data rates are as summarised in the picture above.

Note that category 8 has 1200Mbps DL and 600Mbps UL speed.

The complete report is available here.

Via: WirelessMoves.

Monday, August 16, 2010

Wednesday, August 4, 2010

Coordinated Multi-Point (CoMP): Unresolved problems

I have blogged about CoMP in quite some detail in the past. Someone recently pointed out an interesting video from Fraunhofer Heinrich Hertz Institut which is embedded below:



CoMP may be not as practical as we may think. One of the things pointed out by Dr. Ariela Zeira, InterDigital's Vice-President of Advanced Air Interfaces in the LTE World Summit was that there exists a gap between the theoretical and the practical gains of CoMP.

She went on to suggest the following as way forward for the Coordinated Multipoint acceptance in future:
  • Address root causes of gaps between academia and current feedback schemes
    • Need for improved Channel State Information (CSI) feedback resolution
    • Need for improved frequency domain precoding granularity
  • Apply CoMP where most needed and/or theoretical gains can be approached
    • Heterogeneous networks
      • Interference problem is more severe than in macro-only deployment
        • Especially for Femto Closed Subscriber Group and Pico Cells employing large cell extension
      • Lower delay spread and low mobility can be expected in Femto and Pico cells and reduce performance loss from feedback impairments
    • Relay Backhaul Channel (RBC)
      • More accurate CSI feedback from stationary relay station is possible enabling advanced non-linear precoding schemes.
      • High rank MIMO transmission will not be effective due to higher probability of Line of Sight (LOS) channel from Macro to Relay
CoMP is still probably the most promising spectral efficiency solution but need to focus on closing the gap between gains predicted by theory and those achievable with current LTE Release 8 Feedback Schemes

Thursday, July 29, 2010

Benefits Of Self-Organising Networks

I have blogged about SON's on different occasions. Recently I came across SOCRATES project that aims at the development of self-organisation methods to enhance the operations of wireless access networks, by integrating network planning, configuration and optimisation into a single, mostly automated process requiring minimal manual intervention.

Future communication networks will exhibit a significant degree of self-organisation. The principal objective of introducing self-organisation, comprising self-optimisation, self-configuration and self-healing, is to effectuate substantial operational expenditure (OPEX) reductions by diminishing human involvement in network operational tasks, while optimising network efficiency and service quality.

Regarding the technological scope, SOCRATES primarily concentrates on wireless access networks, as the wireless segment generally forms the bottleneck in end-to-end communications, both in terms of operational complexity and network costs. As a consequence, the largest gains from self-organisation can be anticipated here. We select the 3GPP LTE (3rd Generation Partnership Project, Long Term Evolution) radio interface as the central radio technology in our studies. The reason for this choice is that 3GPP LTE is the natural, highly promising and widely supported evolution of the world’s most popular cellular networking technologies (GSM/EDGE, UMTS/HSPA).

The SOCRATES project is supported by the European Union under the 7th Framework Program, and will run from January 1, 2008 until December 31, 2010.


You can view and download all the presentations from the SOCRATES Project here.

Wednesday, July 28, 2010

MSF LTE Interoperability White Paper, Jun 2010

This white paper provides a summary of the MultiService Forum’s (MSF) Global LTE Interoperability event which took place from March 15-30, 2010.

The LTE Interoperability Event is designed to test standards compliance of Evolved Packet Core network scenarios of interest to major Service Providers, and to gauge vendor support for this technology. Building on the success of previous Global MSF Interoperability (GMI) events, the LTE Interoperability event provided the first global “real network” multi-vendor trial of the Evolved Packet Core infrastructure.

Incorporating the Evolved Packet Core defined within the Third Generation Partnership Project (3GPP) Release 8 (R8) standards, the MSF architecture introduced new access tiles to support LTE access and non-3GPP (specifically eHRPD) access to EPC. The IMS core network provided the application layer for which services may be deployed, and the binding of Quality of Service utilizing the Policy and Charging Control (PCC) for the bearer.

The event demonstrated that most of the defined LTE/EPC interfaces were mature and interoperable; however limited backwards compatibility between different implementations of 3GPP Release 8 specifications did create some issues. The fact that 3GPP does not require backward compatibility is a known limitation, but it is important to understand that this is limiting interoperability with commercially available equipment. Service providers will need to factor this into vendor selection.

Highlights of the event included:-
  • Sessions were successfully established via LTE access to EPC, with creation of default and dedicated bearers with appropriate Quality of Service applied.
  • An end-to-end IMS Voice over LTE session was also successfully demonstrated,
  • Access to the EPC via a simulated eHRPD access was successfully tested.
  • Handover between LTE and eHRPD,
  • Roaming was successfully tested.
Though the essential standards are reasonably mature, the implementation of early versions of the standards within several of the available implementations of network nodes highlights the problems that can arise due to non-backwards compatibility between 3GPP releases. It is also clear that early implementations have focused initially on development of LTE access to EPC and that support for legacy access (2G/3G) to EPC is somewhat behind. Events such as the MSF LTE Interoperability event highlight these issues and prove the validity of the MSF approach to achieving multi-vendor interoperability.


This paper is available to download from here.

Sunday, July 18, 2010

NTT DoCoMo: Core Network Evolution and Voice Strategy

Presentation by Seizo ONOE, Senior Vice President and Managing Director of R&D Strategy Department NTT DOCOMO, INC. in LTE World Summit 2010 on the 18th May 2010

Tuesday, June 8, 2010

Interesting article on Voice options in LTE

Interesting article summarising the Voice issues in LTE from Total Telecom Magazine.



The complete issue of the magazine is available here.

Friday, May 14, 2010

Whitepaper; MIMO and Smart Antennas for 3G and 4G Wireless Systems

3G Americas has published an educational white paper titled, MIMO and Smart Antennas for 3G and 4G Wireless Systems: Practical Aspects and Deployment Considerations. The report is a complete tutorial reference document that outlines the considerable importance of various smart antenna schemes for improving the capacity and coverage of the emerging generations of wireless networks.

With the rapid growth of wireless data traffic, now greatly exceeding voice traffic in many developed markets, operators are anxious to quickly expand the capacity and coverage of their wireless networks. To address these demands for increased capacity in a cost effective way, 3GPP standards have incorporated powerful techniques for using “smart antennas.”

“The gains in spectral efficiency being advanced by new wireless air interface technologies, such as LTE and LTE-Advanced, will be enabled by the application of MIMO and other smart antenna technologies,” stated Kevin Linehan, Vice President and Chief Technology Officer – Base Station Antenna Systems, Andrew Solutions. Linehan, one of the project leaders for the creation of the 3G Americas report continued, “It is critical that operators and others in the industry appreciate these advanced technologies and their practical application.”

The term smart antennas refers to adaptive array antennas – those with electrical tilt, beam width and azimuth control that can follow relatively slow-varying traffic patterns; intelligent antennas, which can form beams aimed at particular users or steer nulls to reduce interference; and MIMO antenna schemes, predominately featured in LTE and LTE-Advanced.

The white paper was created by a 3G Americas technical work group and concentrates on the practical aspects of antennas and their deployment for 3G and 4G wireless systems, specifically downlink antenna techniques available in 3GPP LTE Release 8. The comprehensive report highlights a substantial and growing body of theoretical and field experience that provides reliable guidance on the tradeoffs of various antenna configurations. Some of the areas addressed in the paper include:
  • Smart antennas provide the next substantial increase in throughput for wireless networks. The peak data rates tend to be proportional to the number of send and receive antennas, so 4X4 MIMO is theoretically capable of twice the peak data rates as 2X2 MIMO systems. For another example, in upgrading from HSPA (1X2) to LTE (2X2) a gain of 1.6x is seen (Rysavy Research, 2009).
  • The practical tradeoffs of performance with the realistic constraints on the types of antennas that can be realistically installed, cognizant of zoning, wind loading, size, weight and cabling challenges and constraints from legacy terminals and other equipment. Constraints are, of course, present in both the base station and the terminal side of the air interface, where MIMO technology promises useful gains if multiple antennas, amplifiers, receivers and baseband processing resources can be made available in terminals.
  • Beyond the single antenna or beamforming array cases, 3GPP Release 8 of the LTE standard supports MIMO antenna configurations. This includes Single-User (SU-MIMO) protocols using either Open Loop or Closed-Loop modes as well as Transmit Diversity and MU-MIMO. Closed-Loop MIMO mode, which supports the highest peak data rates, is likely to be the most commonly used scheme in early deployments. However, this Closed-Loop MIMO scheme provides the best performance only when the channel information is accurate, when there is a rich multipath environment and is appropriate in low mobility environments such as with fixed terminals or those used at pedestrian speeds.

The white paper, MIMO and Smart Antennas for 3G and 4G Wireless Systems: Practical Aspects and Deployment Considerations, was written collaboratively by members of 3G Americas and is available for free download HERE.

While MIMO and Smart Antennas for 3G and 4G Wireless Systems concentrates on the practical aspects of deploying antennas in emerging wireless markets, 3G Americas’ June 2009 white paper, MIMO Transmission Schemes for LTE and HSPA Networks, provides additional background information on the processing gains feasible with smart antennas.

Friday, March 26, 2010

E-UTRAN Mobility Drivers and Limitations

Many years back, when things used to be simple, I wrote a tutorial about Handovers in UMTS. It would be very difficult to write a similarly simple tutorial for LTE. Things are a bit complicated because there are many different conditions in which handovers can take place.

It was also easier to visualise the Intra-frequency and Inter-frequency handovers in UMTS and you can probably do the same to some extent in LTE but with things getting more complicated and carrier aggregation, classifying handovers in these categories may be difficult.

3GPP TS 36.300 has an informative Annex E which details the scenarios in which handovers and cell change can/will take place.

It is best to go and see Annex E in detail. Here is a bit of summary from there:

Intra-frequency mobility: intra-frequency mobility is the most fundamental, indispensable, and frequent scenario. With the frequency reuse being one in E-UTRAN, applying any driver other than the “best radio condition” to intra-frequency mobility control incur increased interference and hence degraded performance.

Inter-frequency mobility: as in UTRAN, an operator may have multiple carriers/bands for E-UTRAN working in parallel. The use of these frequency layers may be diverse. For example, some of these frequency layers may utilise the same eNB sites and antenna locations (i.e., co-located configuration), whereas some may be used to form a hierarchical cell structure (HCS), or even be used for private networks. Some frequency layers may provide MBMS services, while some may not. Moreover, E-UTRAN carriers/bands may be extended in the future to increase capacity.

Inter-RAT mobility: the aspects that need to be considered for inter-RAT are similar to those for inter-frequency. For mobility solutions to be complete with the inter-RAT drivers, relevant updates would be necessary on the legacy (UTRAN/GERAN) specifications. This will add to the limitations, which are evidently more effective in inter-RAT.


The drivers for mobility control are:

Best radio condition: The primary purpose of cell reselection, regardless of intra-frequency, inter-frequency, or inter-RAT, is to ensure that the UE camps on/connects to the best cell in terms of radio condition, e.g., path loss, received reference symbol power, or received reference symbol Es/I0. The UE should support measurements to suffice this aspect.

Camp load balancing: This is to distribute idle state UEs among the available bands/carriers/RATs, such that upon activation, the traffic loading of the bands/carriers/RATs would be balanced. At least the path loss difference between different bands should be compensated to avoid UEs concentrating to a certain frequency layer.

Traffic load balancing: This is to balance the loading of active state UEs, using redirection for example. In E-UTRAN, traffic load balancing is essential because of the shared channel nature. That is, the user throughput decreases as the number of active UEs in the cell increases, and the loading directly impacts on the user perception.

UE capability: As E-UTRAN bands/carriers may be extended in the future, UEs having different band capabilities may coexist within a network. It is also likely that roaming UEs have different band capabilities. Overlaying different RATs adds to this variety.

Hierarchical cell structures: As in UTRAN, hierarchical cell structures (HCS) may be utilised in E-UTRAN to cover for example, indoors and hot spots efficiently. It is possible that E-UTRAN is initially deployed only at hot spots, in which case this driver becomes essential for inter-RAT, not just for inter-frequency. Another use case would be to deploy a large umbrella cell to cover a vast area without having to deploy a number of regular cells, while providing capacity by the regular cells on another frequency.

Network sharing: At the edge of a shared portion of a network, it will be necessary to direct UEs belonging to different PLMNs to different target cells.

Private networks/home cells: Cells that are part of a sub-network should prioritise the camping on that sub-network. UEs that do not belong to private sub-networks should not attempt to camp or access them.

Subscription based mobility control: This mobility driver aims to limit the inter-RAT mobility for certain UEs, e.g., based on subscription or other operator policies.

Service based mobility control: An operator may have different policies in allocating frequencies to certain services. For example, the operator may concentrate VoIP UEs to a certain frequency layer or RAT (e.g., UTRAN or GERAN), if evaluations prove this effective. UEs requiring higher data rates may better be served on a frequency layer or RAT (e.g., E-UTRAN) having a larger bandwidth. The operator may also want to accommodate premium services on a certain frequency layer or RAT, that has better coverage or larger bandwidth.

MBMS: For Release-9, no new mobility procedures compared to Release-8 are included specifically for MBMS. In future releases the following should be considered. As MBMS services may be provided only in certain frequency layers, it may be beneficial/necessary to control inter-frequency/RAT mobility depending on whether the UE receives a particular MBMS service or not. For MBMS scenarios only, UE based service dependent cell reselection might be considered acceptable. This aspect also depends on the UE capability for simultaneous reception of MBMS and unicast.


While the issues mentioned above drive E-UTRAN towards “aggressive” mobility control, the limiting factors also have to be considered:

UE battery saving: The mobility solution should not consume excessive UE battery, e.g., due to measurements, measurement reporting, broadcast signalling reception, or TA update signalling.
Network signalling/processing load: The mobility solution should not cause excessive network signalling/processing load. This includes over-the-air signalling, S1/X2 signalling, and processing load at network nodes. Unnecessary handovers and cell reselections should be avoided, and PCH and broadcast signalling, as well as dedicated signallings, should be limited.

U-plane interruption and data loss: U-plane interruption and data loss caused by the mobility solution should be limited.

OAM complexity: The mobility solution should not demand excessive efforts in operating/maintaining a network. For example, when a new eNB is added or an existing eNB fails, the mobility solution should not incur excessive efforts to set up or modify the parameters.

More details available in Annex E of 3GPP TS 36.300

Thursday, March 25, 2010

Home Relays for LTE-Advanced

If you look at the Home eNodeB (Femtocell) architecture, the HeNB is connected to its gateway which in turn is connected to MME/S-GW. There is a considerable amount of technology investment in this approach. The HeNB consists of complete protocol stack, the HeNB-GW is an expensive piece of equipment and there is lots of other things including the management software, etc.

Now in LTE-A, there is a concept of Relays which we have talked about. The Relays do not contain the complete stack (generally just L1 and L2). If capacity is not an issue but coverage, then we may be able to use Home Relays.

The backhaul for Femtocell is Internet whereas for Relay its generally the same Radio resources within the cell. I guess the main thing for Relay is the requirement of reasonably good channel (Line of sight maybe). Home Relays can use the Internet connection but rather than connection terminating in some kind of gateway, it can terminate at the actual eNB.

There are already many advanced antenna techniques that can handle the transmission and reception without much interference and maybe the SON algorithms may need some additional improvements.

The main thing is that if this technology becomes reality then it may cost less than $50 per Home relay and would become really a commonplace.

Tuesday, March 2, 2010

Commercial Mobile Alert System (CMAS) in Release-9

I have blogged about Public Warning System and covered CMAS as part of that earlier.

The following is an extract from 3G Americas white paper, "3GPP Mobile Broadband Innovation Path to 4G: Release 9, Release 10 and Beyond: HSPA+, SAE/LTE and LTE-Advanced,":

In response to the Warning, Alert, and Response Network (WARN) Act passed by Congress in 2006, the Federal Communications Commission (FCC) established the Commercial Mobile Alert Service (CMAS) to allow wireless service providers who choose to participate, to send emergency alerts as text messages to their users who have CMAS capable handsets.

The FCC established a Commercial Mobile Service Alert Advisory Committee (CMSAAC) for the development of a set of recommendations for the support of CMAS. The CMSAAC recommendations were included as the CMAS Architecture and Requirements document in the FCC Notice of Proposed Rule Making (NPRM) which was issued in December 2007. In 2008, the FCC issued three separate Report and Order documents detailing rules (47 Code of Federal Regulations [CFR] Part 10) for CMAS. The FCC CMAS First Report and Order specifies the rules and architecture for CMAS. The FCC CMAS Second Report and Order establishes CMAS testing requirements and describes the optional capability for Noncommercial Educational (NCE) and public broadcast television stations distribute geo-targeted CMAS alerts. The FCC CMAS Third Report and Order defined the CMAS timeline, subscriber notification requirements for CMSPs, procedures for CMSP participation elections and the rules for subscriber opt-out. The FCC also issued a CMAS Reconsideration and Erratum document.

The CMAS network will allow the
Federal Emergency Management Agency (FEMA), to accept and aggregate alerts from the President of the United States, the National Weather Service (NWS), and state and local emergency operations centers, and then send the alerts over a secure interface to participating commercial mobile service providers (CMSPs). These participating CMSPs will then distribute the alerts to their users. between the issuance of the second and third Report & Order documents.

As defined in the FCC CMAS Third Report and Order, CMSPs that voluntarily choose to participate in CMAS must begin an 18 month period of development, testing and deployment of the CMAS no later than 10 months from the date that the Government Interface Design specifications available. On December 7, 2009, the CMAS timeline of the FCC CMAS Third Report and Order was initiated
with the announcement by FEMA and the FCC that the Joint ATIS/TIA CMAS Federal Alert GW to CMSP GW Interface Specification (J-STD-101) has been adopted as the Government Interface Design specification referenced in the FCC CMAS Third Report and Order.

Participating CMSPs must be able to target alerts to individual counties and ensure that alerts reach customers roaming outside a provider’s service area. Participating CMSPs must also transmit alerts with a dedicated vibration cadence and audio attention signal. Emergency alerts will not interrupt calls in progress. CMAS supports only English text-based alert messages with a maximum displayable message size of 90 English characters.


For purposes of CMAS, emergency alerts will be classified in one of three categories:

1. Presidential Alerts. Any alert message issued by the President for local, regional, or national emergencies and are the highest priority CMAS alert

2. Imminent Threat Alerts. Notification of emergency conditions, such as hurricanes or tornadoes, where there is an imminent threat to life or property and some immediate responsive action should be taken

3. Child Abduction Emergency/AMBER Alerts. Alerts related to missing or endangered children due to an abduction or runaway situation

The subscribers of participating CMSPs may opt out of receiving Imminent Threat and Child Abduction/AMBER alerts, but cannot opt out from Presidential Alerts.

The following figure shows the CMAS Reference Architecture as defined in the FCC CMAS First Report and Order:


Reference Point C is the secure interface between the Federal Alert GW and the Commercial Mobile Service Provider (CMSP) GW. The Reference Point C interface supports delivery of new, updated or canceled wireless alert messages, and supports periodic testing of the interface. This interface is defined in the
J-STD-101, the Joint ATIS/TIA CMAS Federal Alert GW to CMSP GW Interface Specification.

Federal Government entity (i.e. FEMA) responsible for the administration of the Federal Alert GW. FEMA will perform the function of aggregating all state, local, and federal alerts and will provide one logical interface to each CMSP who elects to support CMAS alerts.

For GSM and UMTS systems, wireless alert messages that are received by CMSP GWs will be transmitted to targeted coverage areas using GSM-UMTS Cell Broadcast Service (CBS). The CMAS functionality does not require modifications to the 3GPP-defined Cell Broadcast Service.

The ATIS WTSC-G3GSN Subcommittee is developing the CMAS via GSM-UMTS Cell Broadcast Service Specification. The purpose of this standard is to describe the use of the GSM-UMTS Cell Broadcast Service for the broadcast of CMAS messages. The standard includes the mapping of CMAS application level messages to the Cell Broadcast Service message structure.

The ATIS WTSC-G3GSN Subcommittee is developing the Cell Broadcast Entity (CBE) to Cell Broadcast Center (CBC) Interface Specification. The purpose of this standard is to define a standard XML based interface to the Cell Broadcast Center (CBC). The CMSP Alert GW will utilize this interface to provide the CMAS Alert message information to the CBC for broadcast via CBS.

The ATIS WTSC-G3GSN Subcommittee has developed the Implementation Guidelines and Best Practices for GSM/UMTS Cell Broadcast Service Specification and this specification was approved in October 2009. The purpose of this specification is to describe implementation guidelines and best practices related to GSM/UMTS Cell Broadcast Service regardless of the application using CBS. This specification is not intended to describe an end-to-end Cell Broadcast architecture, but includes clarifications to the existing 3GPP CBS standards as well as “best practices” for implementation of the 3GPP standards. CMAS is an example of an application that uses CBS.

J-STD-100, Joint ATIS/TIA CMAS Mobile Device Behavior Specification, defines the common set of requirements for GSM, UMTS, and CDMA based mobile devices behavior whenever a CMAS alert message is received and processed. A common set of requirements will allow for a consistent user experience regardless of the associated wireless technology of the mobile device. Additionally, this common set of requirements will allow the various local, state, and Federal level government agencies to develop subscriber CMAS educational information that is independent of the wireless technology.

CMAS VIA LTE/EPS

In order to comply with FCC requirements for CMAS, CMSPs have a need for standards development to support CMAS over LTE/EPS as it relates to the network-user interface generally described as the “E-Interface” in the CMAS Reference Architecture. The intent of ATIS WTSC-G3GSN is to build upon LTE text broadcast capabilities currently being specified by 3GPP for the Public Warning System (PWS).

3GPP STANDARDS

3GPP TS 22.268. Public Warning System (PWS) Requirements, covers the core requirements for the PWS and covers additional subsystem requirements for the Earthquake and Tsunami Warning System (ETWS) and for CMAS. TS 22.268 specifies general requirements for the broadcast of Warning Notifications to broadcast to a Notification Area that is based on the geographical information as specified by the Warning Notification Provider. This specification also defines specific CMAS requirements based on the three Reports & Orders issued to date by the FCC.

3GPP TS 23.401. GPRS enhancements for E-UTRAN access, specifies the Warning System Architecture for 3GPP accesses and the reference point between the Cell Broadcast Center (CBC) and Mobility Management Entity (MME) for warning message delivery and control functions. This TS identifies the MME functions for warning message transfer (including selection of appropriate eNodeB), and provides Stage 2 information flows for warning message delivery and warning message cancel. The architecture and warning message delivery and control functions support CMAS.

3GPP TS 29.168. Cell Broadcast Center interfaces with the EPC – Stage 3, specifies the procedures and application protocol between the Cell Broadcast center and the MME for Warning Message Transmission, including the messages, information elements and procedures needed to support CMAS.

3GPP TS 36.300. E-UTRA and E-UTRAN – Overall description – Stage 2, specifies the signaling procedures for the transfer of warning messages from the MME to the eNodeB. The signaling procedures support CMAS operations.

3GPP TS 36.331. E-UTRA Radio Resource Control (RRC) – Protocol specification, specifies the radio resource control protocol for UE-to-E-UTRAN radio interface and describes CMAS notification and warning message transfer.

3GPP TS 36.413. E-UTRAN – S1 Application Protocol (S1AP), specifies the E-UTRAN radio network layer signaling protocol between the MME and eNodeB, and describes the warning message transfer needed for CMAS.

3GPP participants are working to complete these specifications and other UE procedures for supporting PWS and CMAS.

ATIS WTSC-G3GSN will develop a Standard for a CMAS via LTE Broadcast Capability Specification. This Standard will map the CMAS application level messages to the LTE warning message transfer protocol (i.e. for CMAS).

This ATIS WTSC-G3GSN effort has an anticipated completion date of December 31, 2010. This takes into account the time needed for completion of the ongoing 3GPP standards development on warning message broadcast for LTE.

ATIS WTSC G3GSN and TIA TR45.8 Subcommittees in conjunction with FEMA will also be jointly developing a testing certification specification for the Reference Point C interface between the Federal Alert GW and the CMSP GW based upon the requirements defined in J-STD-101. This specification has an anticipated completion date of December 31, 2010.

Sunday, February 28, 2010

GSM-UMTS Network migration towards LTE


Another interesting white-paper from 3G Americas. The following from their press release:

A 3rd Generation Partnership Project (3GPP) specification, LTE will serve to unify the fixed and mobile broadband worlds and will open the door to new converged multimedia services. As an all-IP-based technology, LTE will drive a major network transformation as the traditional circuit-based applications and services migrate to an all-IP environment, though introducing LTE will require support and coordination between a complex ecosystem of application servers, devices/terminals and interaction with existing technologies. The report discusses functionality and steps GSM-UMTS network operators may use to effectively evolve their networks to LTE and identifies potential challenges and solutions for enabling the interaction of LTE with GSM, GPRS and UMTS networks.

“This white paper reveals solutions that facilitate a smooth migration for network operators as they deploy LTE,” stated Chris Pearson, president of 3G Americas. “3GPP has clearly defined the technology standards in Release 9 and Release 10, and this paper explores the implementation of these standards on 3GPP networks.”



A reported
130 operators around the world have written LTE into their technology roadmaps. In December 2009, TeliaSonera launched the world’s first LTE networks in Norway and Sweden and an estimated 17 operators are expected to follow in its footsteps in 2010.

“LTE is receiving widespread support and powerful endorsements from industry leaders around the world, but it is important to keep in mind that the evolution to LTE will require a multi-year effort,” Pearson said. “LTE must efficiently and seamlessly coexist with existing wireless technologies during its rise to becoming the leading next-generation wireless technology.”

Operators planning LTE deployments must consider the implications of utilizing LTE in an ecosystem comprising 2G, 3G and future “4G” wireless technologies. Therefore, operators planning an LTE deployment will need to offer multi-technology devices with networks that allow mobility and service continuity between GSM, EDGE, HSPA and LTE.


Monday, February 22, 2010

Codec's for LTE

Sometime back I mentioned about Orange launching AMR-WB codec which would result in 'hi-fi quality' voice (even though its being referred to as HD voice by some). Since then, there has been not much progress on this HD-voice issue.

CODEC stands for “COder-DECoder,” but is also known as an enCOder-DECoder and COmpression-DECompression system when used in video systems. Codec's are important as they compress the voice/video data/packets so less bandwidth is required for the data to be transmitted. At the same time it has to be borne in mind that the capacity to withstand errors decrease with higher compression ratio and as a result it may be necessary to change the codecs during the voice/video call. This calls for flexibility as in case of AMR (Adaptive Multi Rate) Codecs.

The following is from Martin Sauter's book "Beyond 3G – Bringing Networks, Terminals and the Web Together":

Voice codecs on higher layers have been designed to cope with packet loss to a certain extent since there is not usually time to wait for a repetition of the data. This is why data from circuit-switched connections is not repeated when it is not received correctly but simply ignored. For IP sessions, doing the same is difficult, since a single session usually carries both real-time services such as voice calls and best-effort services such as Web browsing simultaneously. In UMTS evolution networks, mechanisms such as ‘Secondary PDP contexts’ can be used to separate the real-time data traffic from background or signaling traffic into different streams on the air interface while keeping a single IP address on the mobile device.

UMTS uses the same codecs as GSM. On the air interface users are separated by spreading codes and the resulting data rate is 30–60 kbit/s depending on the spreading factor. Unlike GSM, where timeslots are used for voice calls, voice capacity in UMTS depends less on the raw data rate but more on the amount of transmit power required for each voice call. Users close to the base station require less transmission power in downlink compared with more distant users. To calculate the number of voice calls per UMTS base station, an assumption has to be made about the distribution of users in the area covered by a cell and their reception conditions. In practice, a UMTS base station can carry 60–80 voice calls per sector. A typical three-sector UMTS base station can thus carry around 240 voice calls. As in the GSM example, a UMTS cell also carries data traffic, which reduces the number of simultaneous voice calls.

The following is an extract from 3G Americas white paper, "3GPP Mobile Broadband Innovation Path to 4G: Release 9, Release 10 and Beyond: HSPA+, SAE/LTE and LTE-Advanced,":

Real-time flows (voice/video) based on rate adaptive codecs can dynamically switch between different codec rates. Codec rate adaptation allows an operator to trade off voice/video quality on one side and network capacity (e.g. in terms of the number of accepted VoIP calls), and/or radio coverage on the other side. Operators have requested a standardized solution to control the codec rate adaptation for VoIP over LTE, and a solution has been agreed upon and specified in the 3GPP Rel-9 specifications, which is provided in this paper.

CODEC RATE ADAPTATION BASED ON ECN

Given previous discussion in 3GPP (3GPP S4-070314) it was clear that dropping IP packets was not an acceptable means for the network to trigger a codec rate reduction. Instead an explicit feedback mechanism had to be agreed on by which the network (e.g. the eNodeB) could trigger a codec rate reduction. The mechanism agreed on for 3GPP Rel-9 is the IP-based Explicit Congestion Notification (ECN) specified in an IETF RFC. ECN is a 2 bit field in the end-to-end IP header. It is used as a “congestion pre-warning scheme” by which the network can warn the end points of incipient congestion so that the sending endpoint can decrease its sending rate before the network is forced to drop packets or excessive delay of media occurs. Any ECN-based scheme requires two parts: network behavior and endpoint behavior. The first part had already been fully specified in an IETF RFC106 and merely had to be adopted into the corresponding specifications (3GPP TS 23.401 and 3GPP TS 36.300). The network behavior is completely service and codec agnostic. That is, it works for both IMS and non-IMS based services and for any voice/video codec with rate-adaptation capabilities. The main work in 3GPP focused on the second part: the endpoint behavior. For 3GPP Rel-9, the endpoint behavior has been specified for the Multimedia Telephony Service for IMS (MTSI - 3GPP TS 26.114). It is based on a generic (i.e. non-service specific) behavior for RTP/UDP based endpoints, which is being standardized in the IETF.

Furthermore, it was agreed that no explicit feedback was needed from the network to trigger a codec rate increase. Instead, the Rel-9 solution is based on probing from the endpoints – more precisely the Initial Codec Mode (ICM) scheme that had already been specified in 3GPP Rel-7 (3GPP S4-070314). After the SIP session has been established, the sending side always starts out with a low codec rate. After an initial measurement period and RTCP receiver reports indicating a “good channel,” the sending side will attempt to increase the codec rate. The same procedure is executed after a codec rate reduction.


Figure 6.8 depicts how codec rate reduction works in Rel-9:
  • Step 0. The SIP session is negotiated with the full set of codec rates and independent of network level congestion. The use of ECN has to be negotiated separately for each media stream (e.g. VoIP).
  • Steps 1 and 2. After ECN has been successfully negotiated for a media stream the sender must mark each IP packet as ECN-Capable Transport (ECT). Two different values, 10 and 01, have been defined in an IETF RFC106 to indicate ECT. However, for MTSI only 10 shall be used.
  • Step 3. To free up capacity and allow more VoIP calls and/or to improve VoIP coverage, the eNodeB sets the ECN field to Congestion Experienced (CE) in an IP packet that belongs to an IP flow marked as ECT. Note that the ECN-CE codepoint in an IP packet indicates congestion in the direction in which the IP packets are being sent.
  • Steps 4 and 5. In response to an ECN-CE the receiving MTSI client issues an RTCP message to trigger a codec rate reduction.
Note that ECN operates in both directions (uplink and downlink) entirely independent and without any interactions. It is very well possible to trigger codec rate adaptation in one direction without triggering it in the other direction.

ONGOING WORK IN 3GPP

A new work item called, Enabling Encoder Selection and Rate Adaptation for UTRAN and E-UTRAN, has been created for 3GPP Rel-10. Part of this work item is to extend the scope of the codec rate adaptation solution agreed in Rel-9 to also apply to HSPA and non-voice RTP-based media streams.

Further Reading: